Disentangling host-parasite-pathogen interactions in a varroa-resistant honeybee population reveals virus tolerance as an independent, naturally adapted survival mechanism

Srinivas THADURI¹, Jörg G. STEPHAN¹ Joachim R. de MIRANDA¹ and Barbara LOCKE^{1*}

¹Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala <u>srinivas.thaduri@slu.se; jorg.stephan@slu.se; joachim.de.miranda@slu.se;</u> <u>barbara.locke@slu.se</u>

*Correspondence: barbara.locke@slu.se; Tel.: +46-18-672-339

SUPPLEMENTARY FILES

Table S1: Effect of co-infection on DWV and ABPV titres. Analysis-of-deviance tables (Type III test) from linear mixed models investigating the effect of the natural background infection level of the other virus on the titres of the infected virus, respectively. Replicate nested within colony ID was included in all models as random effect.

Life	Treatment	Response	Evalanatory Variables	V 2	Df	AICa	con P?	n value
stage		Variable	Explanatory variables	Λ-	DI	AICC	COII.R-	p-value
Adult	DWV (MS+MR)	DWV ^{0.425}	ABPV	0.85	1	1031	0.40	0.35
	ABPV (MS+MR)	Log(ABPV+1)	DWV	0.33	1	224	0.78	0.56
	ABPV (MS+MR)	DWV ^{0.1}	ABPV	5.03	1	316	0.74	0.02
	DWV (MS+MR)	ABPV ^{0.125}	DWV	0.004	1	285	0.25	0.94
	DWV (MS+MR)	DWV-0.225	ABPV	1.22	1	-235	0.49	0.26
Larvae	ABPV (MS+MR)	ABPV-0.825	DWV	0.01	1	-1178	0.00	0.90
	ABPV (MS+MR)	DWV ^{0.15}	ABPV	2.07	1	241	0.25	0.14
	DWV (MS+MR)	ABPV ^{0.375}	DWV	0.02	1	395	0.31	0.86

Table S2: Absolute numbers of survival in the adult bee experiments.

Colony history	HPI	Treatment	Dead	Alive
MR	48h	ABPV	4	196
MR	48h	DWV	5	195
MR	48h	NoVirus	0	200
MR	72h	ABPV	14	176
MR	72h	DWV	12	175
MR	72h	NoVirus	0	180
MS	48h	ABPV	22	178
MS	48h	DWV	17	183
MS	48h	NoVirus	2	198
MS	72h	ABPV	25	158
MS	72h	DWV	27	163
MS	72h	NoVirus	1	178

Table S3: Experimental design. Visual representation of the design of the virus infection experiments in larvae and adults. Shown are the population (POP) of origin (MR or MS); the name of the colony (COL), the experimental replicate (REP) for each colony and the samples collected at the different time points for uninoculated, DWV-inoculated and ABPV-inoculated bees (shaded fields), with the live samples indicated by a ' Θ ' above the diagonal and the dead samples indicated by a ' \dagger ' below the diagonal.

LARVAE																		
POP	COL	DED	NONE						DWV					ABPV				
		NLF	0 hr	12 hr	24 hr	48 hr	72 hr	120 hr	12 hr	24 hr	48 hr	72 hr	120 hr	12 hr	24 hr	48 hr	72 hr	120 hr
	K4	1	0			Θ	0	9			0	Θ	0			0	0	0
	K5	1	0			0	0	9			0	Θ	0			0	0	0
		2	0			0	0	0			0	0	0			0	0	0
MR	К8	1				0	0	0			0	0	0			0	0	0
		2	0			9	0				0	0				0	0	
	KO	1				9	0	0			0	0	0			0	0	0
	K5	2	0			9	0	0			0	0	0			0	0	0
	K1	1	0			0	0	0			0	0	0			0	0	0
	K1	2	0			0	0				0	0				0	0	
	K2	1	0			0	0	0			0	0	0			0	0	0
MS	KZ	2	0			0	0	0			0	0	0			0	0	0
	KG	1	0			0	0	0			0	0	0			0	0	0
	ĸ	2	0			0	0	0			0	0	0			0	0	0
	K7	1				0	0	0			0	0	0			0	0	0

ADULTS																		
	COL	REP	NONE						DWV				ABPV					
PUP			0 hr	12 hr	24 hr	48 hr	72 hr	120 hr	12 hr	24 hr	48 hr	72 hr	120 hr	12 hr	24 hr	48 hr	72 hr	120 hr
MR	D	1	0			0	0	0			0	0 1	0 +			0	0	0
	B_HUC	2	0	0	0	0	0	0	0	0	9	0	0 +	0	0	0 †	0	0
	K5	1	0	0	0	0	0	0	0	0	9	0	0 +	0	0	0	0	0 †
	K8	1	0			0	0	0			9	0 †	0			0	0	0
	К9	1	0			0	0	0			0	0 +	0 +			0	0 †	0 +
	K5_mix	1	0	0	0	0 1	0	0	0	0	0 †	0	0 †	0	0	0 †	0	0 +
	C_nuc	1	Ø	0	0	0 +	0	0	0	0	0 †	0	0 +	Θ	0	0 †	0	0 †
		1	0			9	0	9			0	0 +	0 +			0 †	0 †	<u>0</u> †
MAC	K 2	2	0			0		0			0 †		0 †			0 †		0 †
IVIS	ΝZ	3	0	0	0	0	0	0	0	0	0 †	0		0	0	0 †	0	0 †
		4	0	9	9	9	0	9	0	0	0 †	0	0 +	0	9	0 †	0	0 †
	K6	1	0			0	0	0			0 +	0 +	0			0 +	0 +	0

Table S4. RT-qPCR assays. Details of the RT-qPCR assays used in the experiments, including the target name, the sequences of the forward and reverse primers, the product size, the reaction efficiency (*E*), linearity of the dilution standards (r^2) and the melting temperature of the reaction products (T_m).

Assay	Primers	Sequence (5' - 3')	Size (nt)	Ε	r ²	Tm	
	DWV-F1425	CGTCGGCCTATCAAAG	417	1 681	0.007	70.5 °C	
DWVIND	DWV-B1806	CTTTTCTAATTCAACTTCACC	417	1.001	0.997	79.5 C	
DWV-B	VaDV-F1409	GCCCTGTTCAAGAACATG	413	1.723	0.997	80.5 °C	
	DWV-B1806	CTTTTCTAATTCAACTTCACC					
ABPV	ABPV-F6548	TCATACCIGCCGATCAAG	197	2.043	0.987	81.0 °C	
	KIABPV-B6707	CTGAATAATACTGTGCGTATC					
IAPV	IAPV-F6627	CCATGCCTGGCGATTCAC	203	1 938	0 998	81.0 °C	
	KIABPV-B6707	CTGAATAATACTGTGCGTATC	200	1.950	0.550		
KBV	KBV-F6639	CCATACCTGCTGATAACC	200	1 905	0.005	91 5 °C	
	KIABPV-B6707	CTGAATAATACTGTGCGTATC	200	1.905	0.995	81.5 C	
SDV	SBV-qF3164	TTGGAACTACGCATTCTCTG	335	2 046	0.975	80.3 °C	
5D V	SBV-qB3461	GCTCTAACCTCGCATCAAC	555	2.040	0.975	00.5 C	
BOCV	BQCV-qF7893	AGTGGCGGAGATGTATGC	294	2 194	0.983	80.5 °C	
DQUV	BQCV-qB8150	GGAGGTGAAGTGGCTATATC	274	2.194	0.705	80.5 C	
RNA250	RNA250-F	TGGTGCCTGGGCGGTAAAG	227	1 962	0 000	84.0 °C	
	RNA250-R	TGCGGGGACTCACTGGCTG	221	1.902	0.999	04.0 C	
DD40 DNA	RP49-qF	AAGTTCATTCGTCACCAGAG	205	1.002	0.000	77 (00	
RP49 mRNA	RP49-qB	CTTCCAGTTCCTTGACATTATG	205	1.902	0.999	//.0 -C	

Figure S1: Model predictions of titres of deformed wing virus (DWV) and acute bee paralysis virus (ABPV) found in honeybee larvae (left panel) and adult workers (right panel). Mean values are shown with respect to inoculation treatments (DWV, ABPV, uninoculated) and colony history (MR = mite-resistant, MS = mite-susceptible) over the course of the experiment (HPI = hours post inoculation). Different letters indicate significant differences between predicted marginal means with confidence limits from the respective models that still included all explanatory variables and their interactions.

ABPV (in-oculated)

Figure S2: DWV titres depending on APBV titres. Line shows linear prediction.

Figure S3. The virological composition of the DWV-A and ABPV inocula, based on the most common viruses that can be propagated by injection.

Figure S4: DWV and ABPV titres depending on RP49 titres. Lines shows linear prediction from linear regression models of all data for larvae (DWV^{0.075}: F=1.94, p=0.16, R² = 0.01; ABPV^{0.075}: F=0.02, p=0.87, R² = 0.0002) and alive/dead adults (DWV^{0.125}: F=3.41, p=0.07, R² = 0.016; ABPV^{0.075}: F=1.36, p=0.24, R² = 0.006).